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ABSTRACT: 

When put into practice in the real world, predictive maintenance presents a set of challenges 

for fault detection and prognosis that are often overlooked in studies validated with data from 

controlled experiments, or numeric simulations. For this reason, this study aims to review the 

recent advancements in mechanical fault diagnosis and fault prognosis in the manufacturing 

industry using machine learning methods.. Full-length studies that employed machine 

learning algorithms to perform mechanical fault detection or fault prognosis in manufacturing 

equipment and presented empirical results obtained from industrial case-studies were 

included, except for studies not written in English or published in sources other than peer-

reviewed journals with JCR Impact Factor, conference proceedings and book 

chapters/sections. Of 4549 records, 44 primary studies were selected. In 37 of those studies, 

fault diagnosis and prognosis were performed using artificial neural networks (n = 12), 

decision tree methods (n = 11), hybrid models (n = 8), or latent variable models (n = 6), with 

one of the studies employing two different types of techniques independently. The remaining 

studies employed a variety of machine learning techniques, ranging from rule-based models 

to partition-based algorithms, and only two studies approached the problem using online 

learning methods. The main advantages of these algorithms include high performance, the 

ability to uncover complex nonlinear relationships and computational efficiency, while the 

most important limitation is the reduction in model performance in the presence of concept 

drift. This review shows that, although the number of studies performed in the manufacturing 

industry has been increasing in recent years, additional research is necessary to address the 

challenges presented by real-world scenarios. 

 

INTRODUCTION: 

Machine maintenance, with its impact on 

machine downtime and production costs, 

is directly related to a manufacturing 

companies’ ability to be competitive in 

terms of cost, quality, and performance 

[1, 2]. The purpose of maintenance goes 

beyond repairing an equipment after it 

malfunctions. Its main objective is to 

maintain the functionality of machinery 

and minimize breakdowns.As the name 

suggests, predictive maintenance consists 

in the early detection of problems. Under a 

predictive maintenance program, 

maintenance is performed by monitoring 

the actual condition of machinery and 

repairing or replacing components after a 

certain level of deterioration has been 

detected, instead of performing repairs 

after a fault has occurred [3]. This 

approach has several advantages over 

reactive and preventive maintenance 

strategies 
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[4, 5], namely: 

 Prevention of catastrophic failures. 

 Extension of an equipment’s useful 

life. 

 Optimization of preventive 

maintenance tasks. 

 Improved management of the 

maintenance inventory. 

 Optimization of equipment 

availability. 

 Improved productivity. 

By preventing serious failures, reducing 

unexpected faults, and maximizing the 

mean time between failures (MTBF), 

predictive maintenance helps reduce 

workplace accidents and their severity, 

reduces the number of repairs and the 

mean time to repair (MTTR) and extends 

the useful life of equipment, all of which 

results in increased earnings, less 

maintenance and production costs and 

more sustainable manufacturing [4, 6]. 

According to Sullivan et al. [5], the 

successful implementation of a predictive 

maintenance program can lead to an 

average reduction of maintenance costs 

between 25% and 30% and a return on 

investment (ROI) of 1000%. 

Predictive maintenance is a form of 

condition-based maintenance [4], which 

relies on the prediction and detection of 

incipient faults in the equipment based on 

parameter measurements that reflect a 

machine’s real condition [7,8,9]. In 

condition-based maintenance, decision-

making is supported by diagnostics and 

prognostics techniques [7]. 

Diagnostics, which involves performing 

fault detection and identification (FDI), is 

generally performed using hardware 

redundancy methods or analytical 

redundancy methods. Hardware 

redundancy consists in measuring the same 

parameters using more than one sensor and 

then comparing the duplicate signals by 

means of various techniques, such as 

signal processing methods [10]. Analytical 

redundancy methods are based on 

mathematical models of the system and 

can be divided in quantitative, or model-

based, methods and qualitative, or data-

driven, methods [10, 11]. Both methods 

compare predicted or estimated parameters 

to real, measured values, but while model-

based methods estimate the parameters of 

interest based on a mathematical model of 

the system under normal operating 

conditions, data-driven methods employ 

historical data and artificial intelligence 

algorithms to predict such parameters or 

detect anomalous values. 

While diagnostics deals with the detection, 

isolation and identification of faults, 

prognostics aims to predict faults in the 

monitored system before they occur [7]. 

Specifically, prognostics techniques are 

used to estimate how soon - i.e., estimation 

of the remaining useful life (RUL) - and 

how likely a fault is to occur, but most of 

the literature on machine prognostics 

focuses on the former type of prediction 

[7]. RUL estimation methods, which can 

also be data-driven, aim to predict how 

long a machine will function before a fault 

occurs or if the machine is going to fail in 

a given time interval [7]. 

Since they don’t require additional 

hardware, analytical redundancy 

methodologies are less expensive to 

implement than hardware redundancy 

methods Given the emergence of Internet 

of Things (IoT) technologies in industrial 

settings it is now possible to obtain a real-

time digital representation of the 

production processes and current status of 

the equipment which has led to an 

exponential growth of the volume of 

industrial data Data-driven methods, in 

particular machine learning and data 

mining techniques, are well suited to 

extract knowledge from this wealth of data 

and have successfully been used in the 

context of predictive maintenance 

Moreover, although model-based methods 

can produce good results if the model of 

the system is precise, building an accurate 

mathematical model of a system is an 

arduous task that makes model-based 

methods a less viable option for complex 
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systems Recent review papers focusing on 

the use of machine learning techniques for 

predictive maintenance have identified that 

commonly used data-driven methods 

include artificial neural networks support 

vector machines decision trees (including 

ensemble methods), k-means and logistic 

regression among others. 

Predicting and detecting faults in industrial 

equipment are difficult tasks that require 

the choice of adequate techniques to obtain 

accurate results. The present study 

performs a systematic literature review of 

the machine learning methods used for the 

detection of mechanical faults and the 

prognosis of faults in manufacturing 

equipment in real-world scenarios. It is 

meant to serve as a foundation for the 

implementation of predictive maintenance 

systems and help identify future research 

opportunities. The literature on mechanical 

fault detection and fault prognosis is vast, 

but to the best of the authors’ knowledge 

no systematic literature review on this 

specific topic of study exists. 

The review focuses on the detection of 

mechanical faults because these types of 

faults are a leading cause of breakdowns in 

manufacturing equipment As mentioned 

above, fault prognosis aims to predict the 

time left before a machine breaks down 

and/or the probability of failure, without 

seeking to identify the type of fault 

(diagnostics techniques can be used for 

this purpose) [7]. Therefore, primary 

studies focusing on both mechanical fault 

detection and fault prognosis were 

considered in this review. 

Another important aspect of this review is 

that only real-world industrial cases are 

considered. When put into practice in the 

real world, predictive maintenance 

presents a set of challenges for fault 

diagnosis and prognosis that are often 

overlooked in studies validated with data 

obtained from controlled experiments, 

testbeds, or numeric simulations. 

Manufacturing systems are characterized 

by  

complex, non-stationary processes where 

noise and other disturbances are a reality 

This conditions the choice and 

applicability of machine learning methods, 

as do other aspects of practical order such 

as the absence of historical fault data that 

occurs frequently in industrial settings and 

restricts the learning task to unsupervised 

and semi-supervised methods. For these 

reasons, this study aims to present an 

overview of the current landscape of fault 

diagnosis and prognosis in real-world 

scenarios using machine learning 

techniques. 

The study here presented was guided by 

five research questions aimed at 

characterizing the relevant research in 

terms of publication sources and scientific 

fields, as well as examining the state-of-

the-art machine learning methods for 

mechanical fault detection and fault 

prognosis in manufacturing equipment, 

their strengths and weaknesses, and their 

application in the context of data stream 

learning. A search for eligible publications 

was conducted in five academic databases, 

which, after applying a set of criteria, 

culminated in the selection of forty-four 

primary studies. 

LITERATURE REVIEW: 

Equipment reliability analysis is mainly 

conducted to quantify the probability of 

equipment failure. Poor reliability of 

equipment will lead to a high probability 

of equipment failure. Yang et al. [10] 

proposed a simple yet effective supervised 

deep hash approach, which constructed 

binary hash codes from labeled data for 

large-scale image search. Makantasis et al. 

[11] proposed a deep supervised learning-

based classification method that 

hierarchically constructs high-level 

features in an automated way. These 

references are the main motivation behind 

the research work presented in this paper. 

Deep learning is a method for representing 

data and for learning data in machine 

learning. TensorFlow was used to integrate 

one-dimensional or two-dimensional 

convolutional neural networks (CNN) in 

https://link.springer.com/article/10.1007/s10489-022-03344-3#ref-CR7
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[12]. Considering the complexity of the 

reliability analysis model and the 

objectivity of the equipment data set, we 

propose a TensorFlow-enabled DNN 

model to simulate the degradation process 

of the equipment. According to Zio [1], the 

knowledge, information, and data available 

for the modeling, computations, and 

analyses done in reliability engineering are 

rapidly increasing. The degradation model 

for health management of equipment is 

increasingly made of heterogeneous and 

highly interconnected elements. Lei et al. 

[13] proposed an intelligent fault diagnosis 

method using unsupervised feature 

learning for mechanical big data. The 

proposed unsupervised two-layer neural 

network achieved high diagnosis 

accuracies for the motor bearing dataset, 

compared to existing methods. Gal and 

Ghahramani [14] used dropout as a 

Bayesian approximation to estimate 

uncertainty with a DNN model. Compared 

with traditional reliability analysis 

methods, machine learning methods (e.g., 

DNN) have been applied widely with the 

features of parallel processing, fault 

tolerance, self-learning and self-

monitoring. Time series data are 

measurement sequences that describe the 

behavior of time-varying systems or 

equipment. The application of time series-

based prediction methods in the fields of 

medicine, aerospace, finance, commerce, 

meteorology and entertainment were 

introduced in [15], [16]. Khodayar et al. 

[17] developed a DNN structure based on 

stacked autoencoder and stacked denoising 

autoencoder for ultra-short-term and short-

term wind speed predictions. The 

experiment results showed that the DL 

model was feasible for short-term 

predictions. Deb et al. [18] summarized 

state of the art machine learning methods 

for predicting time seriesbased energy 

consumption. The authors concluded that a 

hybrid model comprised of two or more 

prediction techniques was more effective 

for time series prediction. Considering the 

randomness of equipment deterioration, in 

this paper, we evaluate the risk of 

equipment failure through short-term and 

medium-term predictions. The motivation 

behind the work presents in this paper is to 

discover the critical time node and support 

active maintenance when the running 

status of equipment changes. 

IN “MACHINE LEARNING IN 

MATERIALS INFORMATICS: 

RECENT APPLICATIONS AND 

PROSPECTS” Propelled partly by the 

Materials Genome Initiative, and partly by 

the algorithmic developments and the 

resounding successes of data-driven efforts 

in other domains, informatics strategies are 

beginning to take shape within materials 

science. These approaches lead to 

surrogate machine learning models that 

enable rapid predictions based purely on 

past data rather than by direct 

experimentation or by 

computations/simulations in which 

fundamental equations are explicitly 

solved. Data-centric informatics methods 

are becoming useful to determine material 

properties that are hard to measure or 

compute using traditional methods— due 

to the cost, time or effort involved—but 

for which reliable data either already exists 

or can be generated for at least a subset of 

the critical cases. Predictions are typically 

interpolative, involving fingerprinting a 

material numerically first, and then 

following a mapping (established via a 

learning algorithm) between the fingerprint 

and the property of interest. Fingerprints, 

also referred to as ―descriptors‖, may be of 

many types and scales, as dictated by the 

application domain and needs.  

IN “AN INFORMATICS APPROACH 

TO TRANSFORMATION 

TEMPERATURES OF NITI-BASED 

SHAPE MEMORY ALLOYS” 

The martensitic transformation serves as 

the basis for applications of shape memory 

alloys (SMAs). The ability to make rapid 

and accurate predictions of the 

transformation temperature of SMAs is 

therefore of much practical importance. In 

this study, we demonstrate that a statistical 

https://www.sciencedirect.com/topics/physics-and-astronomy/martensitic-transformation
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learning approach using three features or 

material descriptors related to the chemical 

bonding and atomic radii of the elements 

in the alloys, provides a means to predict 

transformation temperatures. Together 

with an adaptive design framework, we 

show that iteratively learning and 

improving the statistical model can 

accelerate the search for SMAs with 

targeted transformation temperatures. The 

possible mechanisms underlying the 

dependence of the transformation 

temperature on these features is discussed 

based on a Landau-type phenomenological 

model.  

IN “A GENERAL-PURPOSE 

MACHINE LEARNING 

FRAMEWORK FOR PREDICTING 

PROPERTIES OF INORGANIC 

MATERIALS” A very active area of 

materials research is to devise methods 

that use machine learning to automatically 

extract predictive models from existing 

materials data. While prior examples have 

demonstrated successful models for some 

applications, many more applications exist 

where machine learning can make a strong 

impact. To enable faster development of 

machine-learning-based models for such 

applications, we have created a framework 

capable of being applied to a broad range 

of materials data. Our method works by 

using a chemically diverse list of 

attributes, which we demonstrate are 

suitable for describing a wide variety of 

properties, and a novel method for 

partitioning the data set into groups of 

similar materials to boost the predictive 

accuracy. In this manuscript, we 

demonstrate how this new method can be 

used to predict diverse properties of 

crystalline and amorphous materials, such 

as band gap energy and glass-forming 

ability Rational design of materials is the 

ultimate goal of modern materials science 

and engineering. As part of achieving that 

goal, there has been a large effort in the 

materials science community to compile 

extensive data sets of materials properties 

to provide scientists and engineers with 

ready access to the properties of known 

materials.  

CONCLUSION: 

The developed AI highlights the sound 

applicability of ANN for fatigue failure 

prediction by exhibiting a mean 

conservative estimation accuracy of 

91.6%. The overall accuracy, considering 

non-conservative and conservative false 

statements, of 81.1% is also a satisfying 

value. Summarizing, one can state that this 

novel fatigue failure prediction approach 

may form the basis of an innovative new 

way to characterize fatigue behaviour. 

Within this study, applicability is only 

investigated for machined surfaces.A 

derived threshold fatigue strength surface, 

by determining the lowest stress 

amplitude at which failure is predicted, for 

any given hardness and defect size 

combination, enables to evaluate the 

fatigue strength in dependency of these 

two parameter. This translation is bridging 

the gap between AI and actual application 

in fatigue.Although the amount of data is 

considered little for training an ANN, 

satisfying results are btained. Iterative 

architecture and parameter optimization 

showed distinct improvement. The effort 

to produce necessary data is significant but 

provides future opportunities to further 

improve the accuracy of presented AI 

based fatigue failure prediction model. 

Implementation of additional, substantial 

influencing factors, such as residual 

stresses, may cause a more reliable fatigue 

failure prediction, however its 

determination is of high expense and 

cannot be performed after destructive 

testing due to release of inherent 

stresses.Provided a data base large enough 

to cover all significant material groups and 

as well may feature additional significant 

input arguments, alongside feasible 

improvements outlined in this paper, 

similar AI based methodologies possess 

the potential to possibly become a leading 

technology in future. However, this should 

https://www.sciencedirect.com/topics/engineering/stress-amplitude
https://www.sciencedirect.com/topics/engineering/stress-amplitude
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be supported and validated with other 

significant quantitative data. 
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